Scientific Journal Impact Factor

ФУНКЦИЯ БЕЛКОВ КЛЕТКИ

Пардаева Сохиба

Самарқанд государственный медицинский институт кафедра медицинцки химия ассистент.

Жумаева Фаёза

Самарканд государственный медицинский институт факультет фармация.

Ахмедов Асрор

Самарқанд государственный медицинский институт факультет фармация.

АННОТАЦИЯ

В этой статье обсуждается история белков, формы и структуры белков, функция белков клетки.

Ключевые слова: Фибрин, Геррит Мульдер, рентгеноструктурного анализ, размер белков

ABSTRACT

This article discusses the history of proteins, the shape and structure of proteins, the function of cell proteins

Key words: Fibrin, Gerrit Mulder, X-ray diffraction analysis, protein size

ВВЕДЕНИЕ

Антуан Франсуа де Фуркруа, основоположник изучения белков Впервые белок был получен (в виде клейковины) в 1728 г. итальянцем Якопо Бартоломео Беккари из пшеничной муки. Белки были выделены в отдельный класс биологических молекул в XVIII веке в результате работ французского химика Антуана де Фуркруа и других учёных, в которых было отмечено свойство белков коагулировать (денатурировать) под воздействием нагревания или кислот. В то время были исследованы такие белки, как альбумин («яичный белок»), фибрин (белок из крови) и глютен из зерна пшеницы.

МЕТОДЫ

В начале XIX века уже были получены некоторые сведения об элементарном составе белков, было известно, что при гидролизе белков образуются аминокислоты. Некоторые из этих аминокислот (например глицин и лейцин) уже были охарактеризованы. Голландский химик Геррит Мульдер на основе анализа химического состава белков выдвинул гипотезу, что практически все белки имеют сходную эмпирическую формулу. В 1836 году Мульдер предложил первую модель химического

369

VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423

Scientific Journal Impact Factor

строения белков. Основываясь на теории радикалов, он после нескольких уточнений пришёл к выводу, что минимальная структурная единица белка обладает следующим составом: $C_{40}H_{62}N_{10}O_{12}$. Эту единицу он назвал «протеином» (Pr) (от греч. протос — первый, первичный), а теорию — «теорией протеина» Сам термин «протеин» был предложен ещё шведским химиком Якобом Берцелиусом Состоит из нескольких протеинных единиц, серы и фосфора. Например, он предложил записывать формулу фибрина как 10PrSP. Мульдер также исследовал продукты разрушения белков — аминокислоты и для одной из них (лейцина) с малой долей погрешности определил молекулярную массу — 131 дальтон. По мере накопления новых данных о белках теория протеина стала подвергаться критике, но, несмотря на это, до конца 1850-х всё ещё считалась общепризнанной.

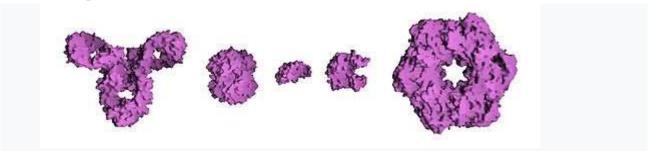
К концу XIX века было исследовано большинство аминокислот, которые белков. В 1880-xвходят состав конце ΓΓ. русский учёный А. Я. Данилевский отметил существование пептидных групп (СО—NH) белка^{[6][7]}. В 1894 году немецкий молекуле физиолог Альбрехт Коссель выдвинул теорию, согласно которой именно аминокислоты являются основными структурными элементами белков^[8]. В начале XX века немецкий Фишер экспериментально доказал, химик Эмиль что белки состоят аминокислотных остатков, соединённых пептидными связями. Он же осуществил первый анализ аминокислотной последовательности белка и объяснил явление протеолиза.

Однако центральная роль белков в организмах не была признана до 1926 года, когда американский химик Джеймс Самнер (впоследствии — лауреат Нобелевской премии по химии) показал, что фермент уреаза является белком^[9].

Сложность выделения чистых белков затрудняла их изучение. Поэтому первые исследования проводились с использованием тех полипептидов, которые легко могли быть очищены в большом количестве, то есть белков яиц, различных токсинов, крови, куриных a также пищеварительных/метаболических ферментов, выделяемых после забоя скота. В конце 1950-х годов компания Armour Hot Dog Co. смогла очистить бычьей панкреатической рибонуклеазы A, которая стала экспериментальным объектом для многих исследований.

Идея о том, что вторичная структура белков — результат образования водородных связей между аминокислотными остатками, была

VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423


Scientific Journal Impact Factor

высказана Уильямом Астбери в 1933 году, но Лайнус Полинг считается первым учёным, который смог успешно предсказать вторичную структуру белков. Позднее Уолтер Каузман, опираясь на работы Кая Линнерстрём-Ланга, внёс весомый вклад в понимание законов образования третичной структуры белков и роли в этом процессе гидрофобных взаимодействий. В конце 1940-х годов Фредерик Сенгер разработал метод секвенирования 1950-x белков, с помощью которого он к 1955 году определил аминокислотную последовательность двух цепей инсулина [10][11][12], продемонстрировав, что белки — это линейные полимеры аминокислот, а не разветвлённые (как у некоторых сахаров) цепи, коллоиды или циклолы. Первым белком, аминокислотную последовательность которого установили 1972 советские/российские учёные, стала В году аспартатаминотрансфераза[13][14].

Первые пространственные структуры белков, полученные методом дифракции рентгеновских лучей (рентгеноструктурного анализа) стали известны в конце 1950-х — начале 1960-х годов, а структуры, открытые с помощью ядерного магнитного резонанса — в 1980-х годах. В 2012 году Банк данных о белках (Protein Data Bank) содержал около 87 000 структур белков^[15].

В XXI веке исследование белков перешло на качественно новый уровень, когда исследуются не только индивидуальные очищенные белки, но и одновременное и посттрансляционных изменение количества модификаций большого числа белков отдельных клеток, тканей или целых организмов. Эта область биохимии называется протеомикой. С помощью методов биоинформатики стало обработать возможно не только данные рентгеноструктурного анализа, но и предсказать структуру белка, аминокислотной последовательности. В на его время криоэлектронная микроскопия крупных белковых комплексов предсказание пространственных структур белковых доменов с компьютерных программ приближаются к атомарной точности^[16].

Размер

VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423

Scientific Journal Impact Factor

Сравнительный размер молекул белков. Слева направо: антитело (IgG) (150 кДа), гемоглобин (66,8 кДа), гормон инсулин, фермент аденилаткиназа и фермент глютаминсинтетаза.

Размер белка может измеряться в числе аминокислотных остатков или в дальтонах (молекулярная масса), но из-за относительно большой величины молекулы масса белка выражается в производных единицах — килодальтонах (кДа). Белки дрожжей, в среднем, состоят из 466 аминокислотных остатков и имеют молекулярную массу 53 кДа. Самый большой из известных в настоящее время белков — титин — является компонентом саркомеров мускулов; молекулярная масса его различных вариантов (изоформ) варьирует в интервале от 3000 до 3700 кДа. Титин камбаловидной мышцы (лат. soleus) человека состоит из 38 138 аминокислот^[17].

Для определения молекулярной массы белков применяют такие методы, как гель-фильтрация, электрофорез в полиакриламидном геле, масс-спектрометрический анализ, седиментационный анализ и другие^[18].

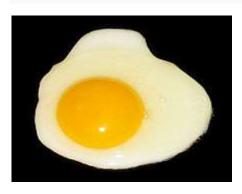
Физико-химические свойства

Белки обладают свойством амфотерности, то есть в зависимости от как кислотные, так и основные свойства. проявляют присутствуют способных несколько ТИПОВ химических группировок, к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых (аспарагиновая и глутаминовая кислоты) И азотсодержащие аминокислот группы боковых цепей основных аминокислот (в первую очередь, εаминогруппа лизина и амидиновый остаток CNH(NH₂) аргинина, в несколько степени — имидазольный остаток гистидина). Каждый белок характеризуется изоэлектрической точкой (рІ) — кислотностью среды (рН), при которой суммарный электрический заряд молекул данного белка равен нулю и, соответственно, ОНИ не перемещаются в электрическом поле (например при электрофорезе). В изоэлектрической точке гидратация и растворимость белка минимальны. Величина pI зависит от соотношения кислых и основных аминокислотных остатков в белке: у белков, содержащих много кислых аминокислотных остатков, изоэлектрические точки лежат в кислой области (такие белки называют кислыми), а у белков, содержащих больше основных остатков, — в щелочной (основные белки). Значение рІ данного белка также может меняться в зависимости от ионной силы и типа буферного раствора, в котором он находится, так как нейтральные соли влияют на степень ионизации

VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423

Scientific Journal Impact Factor

химических группировок белка. pI белка можно определить, например из кривой титрования или с помощью изоэлектрофокусирования^[18].


В целом, pI белка зависит от выполняемой им функции: изоэлектрическая точка большинства белков тканей позвоночных лежит в пределах от 5,5 до 7,0, однако в некоторых случаях значения лежат в экстремальных областях: так, например, для пепсина — протеолитического фермента сильнокислого желудочного сока pI $\sim 1^{[19]}$, а для сальмина — белка-протамина молок лосося, особенностью которого является высокое содержание аргинина, — pI ~ 12 . Белки, связывающиеся с нуклеиновыми кислотами за счёт электростатического взаимодействия с фосфатными группами, часто являются основными белками. Примером таких белков служат гистоны и протамины.

Растворимость

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, входящий в состав шёлка и паутины^[20]. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и рН раствора^[18].

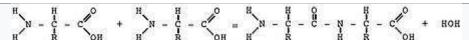
Белки также делятся на гидрофильные и гидрофобные. К гидрофильным относится большинство белков цитоплазмы, ядра и межклеточного вещества, в том числе нерастворимые кератин и фиброин. К гидрофобным относится большинство белков, входящих В состав биологических мембран, мембранных белков, интегральных которые взаимодействуют гидрофобными липидами мембраны^[21] (у этих белков, как правило, есть и гидрофильные участки).

Денатурация

Деструкция белка куриного яйца под воздействием высокой температуры

Денатурацией белка называют любые изменения в его биологической активности и/или физико-химических свойствах, связанные с потерей четвертичной, третичной или вторичной структуры (см. раздел «Структура белка»). Как правило, белки достаточно стабильны в тех

373


VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423

Scientific Journal Impact Factor

условиях (температура, рН и др.), в которых они в норме функционируют в организме^[9]. Резкое изменение этих условий приводит к денатурации белка. В зависимости от природы денатурирующего агента выделяют механическую встряхивание), (нагревание. (сильное перемешивание ИЛИ физическую охлаждение, облучение, обработка ультразвуком) химическую (кислоты и щёлочи, поверхностно-активные вещества, мочевина) денатурацию^[18].

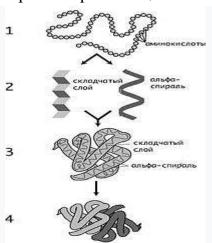
Денатурация белка может быть полной или частичной, обратимой или необратимой. Самый известный случай необратимой денатурации белка в быту — это приготовление куриного яйца, когда под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, нерастворимым и непрозрачным. Денатурация в некоторых случаях обратима, как в случае осаждения водорастворимых белков с помощью солей аммония (метод высаливания), и этот метод используется как способ их очистки^[22].

Структура

Схематическое изображение образования пептидной связи (справа). Подобная реакция происходит в молекулярной машине, синтезирующей белок, — рибосоме

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Молекулы белков представляют собой линейные полимеры, состоящие из остатков α-L-аминокислот (которые являются мономерами), также в состав белков могут входить модифицированные аминокислотные остатки и компоненты неаминокислотной природы. Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. Хотя на первый взгляд может показаться, что использование в большинстве белков «всего» 20 видов аминокислот ограничивает разнообразие белковых структур, на самом деле количество вариантов трудно переоценить: для цепочки из 5 аминокислотных остатков оно составляет уже более 3 миллионов, а цепочка из 100 аминокислотных остатков (небольшой белок) может быть представлена более чем в 10¹³⁰ вариантах. Цепочки длиной от 2 до нескольких десятков аминокислотных остатков часто называют пептидами, при большей степени полимеризации — белками, хотя это деление весьма условно.



VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423

Scientific Journal Impact Factor

При образовании белка в результате взаимодействия α -карбоксильной группы (-COOH) одной аминокислоты с α -аминогруппой (-NH₂) другой аминокислоты образуются пептидные связи. Концы белка называют N- и Сконцом, в зависимости от того, какая из групп концевого аминокислотного остатка свободна: -NH₂ или -COOH, соответственно. При синтезе белка на рибосоме первым (N-концевым) аминокислотным остатком обычно является остаток метионина, а последующие остатки присоединяются к С-концу предыдущего.

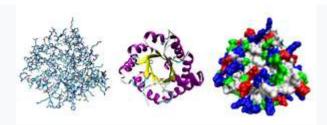
Уровни организации

Уровни структурной организации белков: 1 — первичная, 2 — вторичная, 3 — третичная, 4 — четвертичная

К. Линдстрём-Ланг предложил выделять 4 уровня структурной организации

белков: первичную, вторичную, третичную и четвертичную структуры. Хотя такое деление несколько устарело, им продолжают пользоваться^[4]. Первичная структура (последовательность аминокислотных остатков) полипептида определяется структурой его гена и генетическим кодом, а структуры более высоких порядков формируются в процессе сворачивания белка^[23]. Хотя пространственная структура белка в целом определяется его аминокислотной последовательностью, она является довольно лабильной и может зависеть от внешних условий, поэтому более правильно говорить о предпочтительной или наиболее энергетически выгодной конформации белка^[4].

Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями. Ниже приведены самые распространённые типы вторичной структуры белков^[23]:



VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423

Scientific Journal Impact Factor

- а-спирали плотные витки вокруг длинной оси молекулы. Один виток составляет 3,6 аминокислотных остатка, шаг спирали равен 0,54 нм[25] (на один аминокислотный остаток приходится 0,15 нм). Спираль стабилизирована водородными связями между Н и О пептидных групп, отстоящих друг от друга на 4 звена. Хотя α-спираль может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина. Расположенные близко друг другу остатки аспарагина, серина, треонина и лейцина могут стерически мешать образованию спирали, остатки пролина вызывают изгиб цепи и тоже нарушают α-спирали;
- β-листы (складчатые слои) несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0,34 нм на аминокислотный остаток^[26]) аминокислотами в первичной структуре или разными цепями белка (а не близко расположенными, как в α-спирали). Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация) или в одну сторону (параллельная β-структура). Также возможно существование смешанной β-структуры, состоящей из параллельной и антипараллельной β-структур^[27]. Для образования β-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин;
 - π-спирали;
 - 3₁₀-спирали;
 - неупорядоченные фрагменты.

Третичная структура

Разные способы изображения трёхмерной структуры белка на примере триозофосфатизомеразы. Слева — «стержневая» модель, с изображением всех атомов и связей между ними; цветами показаны элементы. В середине — мотив укладки. Справа — контактная поверхность белка, построенная с учётом вандер-ваальсовых радиусов атомов; цветами показаны особенности активности участков

VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423

Scientific Journal Impact Factor

Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

- ковалентные связи (между двумя остатками цистеина дисульфидные мостики);
- ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;
 - водородные связи;
- гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Исследования принципов укладки белков показали, что между уровнем вторичной структуры и атомарной пространственной структурой удобно выделять ещё один уровень — мотив укладки (архитектура, структурный мотив). Мотив укладки определяется взаимным расположением элементов вторичной структуры (α -спиралей и β -тяжей) в пределах белкового домена — компактной глобулы, которая может существовать или сама по себе или входить в состав более крупного белка наряду с другими доменами. Рассмотрим для примера один из характерных мотивов строения белков. Изображённый на рисунке справа глобулярный белок, триозофосфатизомераза, имеет мотив укладки, который называется α/β -цилиндр: 8 параллельных β -тяжей формируют β -цилиндр внутри ещё одного цилиндра, сложенного из 8 α -спиралей. Такой мотив обнаруживается примерно в 10 % белков^[28].

Известно, что мотивы укладки являются довольно консервативными и встречаются в белках, которые не имеют ни функциональных, ни эволюционных связей. Определение мотивов укладки лежит в основе физической, или рациональной классификации белков (такой как CATH или SCOP)^[28].

Для определения пространственной структуры белка применяют методы рентгеноструктурного анализа, ядерного магнитного резонанса и некоторые виды микроскопии.

Четвертичная структура

VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423

Scientific Journal Impact Factor

Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

Классификация по типу строения

По общему типу строения белки можно разбить на три группы:

- 1. Фибриллярные белки образуют полимеры, их структура обычно высокорегулярна и поддерживается, в основном, взаимодействиями между разными цепями. Они образуют микрофиламенты, микротрубочки, фибриллы, поддерживают структуру клеток и тканей. К фибриллярным белкам относятся кератин и коллаген.
- 2. Глобулярные белки водорастворимы, общая форма молекулы более или менее сферическая.
- 3. Мембранные белки имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки. Мембранные белки выполняют функцию рецепторов, то есть осуществляют передачу сигналов, а также обеспечивают трансмембранный транспорт различных веществ. Белки-транспортёры специфичны, каждый из них пропускает через мембрану только определённые молекулы или определённый тип сигнала.

ЗАКЛЮЧЕНИЕ

Простые и сложные белки

Помимо цепей, состав белков пептидных В многих входят неаминокислотные группы, и по этому критерию белки делят на две большие группы — простые и сложные белки (протеиды). Простые белки состоят только из полипептидных цепей, сложные белки содержат также неаминокислотные, или простетические, группы. В зависимости OTхимической природы простетических групп среди сложных белков выделяют следующие классы^[20]:

• Гликопротеины, содержащие в качестве простетической группы ковалентно связанные углеводные остатки; гликопротеины, содержащие остатки мукополисахаридов относятся к подклассу протеогликанов. В

378

VOLUME 1 | ISSUE 10 ISSN 2181-1784 SJIF 2021: 5.423

Scientific Journal Impact Factor

образовании связи с углеводными остатками обычно участвуют гидроксильные группы серина или треонина. Большая часть внеклеточных белков, в частности, иммуноглобулины относится к гликопротеинам. В протеогликанах углеводная часть составляет ~95 % от общей массы молекулы белка, они являются основным компонентом межклеточного матрикса;

- Липопротеины, содержащие в качестве простетической части нековалентно связанные липиды. Липопротеины, образованные белкамиаполипопротеинами и связывающимися с ними липидами, используются для транспорта липидов в крови;
- Металлопротеиды, содержащие негемовые координационно связанные ионы металлов. Среди металлопротеидов есть белки, выполняющие депонирующие транспортные функции (например И железосодержащие ферритин и трансферрин) И ферменты (например цинксодержащая карбоангидраза и различные супероксиддисмутазы, содержащие в активных центрах ионы меди, марганца, железа и других металлов);
- Нуклеопротеиды, содержащие нековалентно связанные ДНК или РНК. К нуклеопротеидам относится хроматин, из которого состоят хромосомы;
- Фосфопротеины, содержащие в качестве простетической группы ковалентно связанные остатки фосфорной кислоты. В образовании сложноэфирной связи с фосфатом участвуют гидроксильные Фосфопротеином, серина, треонина и тирозина. группы частности, является казеин молока $^{[29]}$;
- окрашенные простетические • Хромопротеиды, содержащие различной химической природы. К ним относится множество белков с металлсодержащей порфириновой простетической группой, выполняющие функции: гемопротеины (белки, разнообразные содержащие В качестве простетической группы гем, например гемоглобин и цитохромы), хлорофиллы, флавопротеиды с флавиновой группой и др.

REFERENCES

- 1. Альбертс Б., Брей Д., Льюис Дж. И др. Молекулярная биология клетки. В 3 томах. М. Мир, 1994. ISBN 5-03-001986-3.
- 2. Ленинджер А. Основы биохимии. В 3 томах. М.: Мир, 1985.
- 3. Страйер Л. Биохимия. В 3 томах. М. Мир, 1984.